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ABSTRACT
Recurrent Neural Networks (RNNs) have long been the dominant
architecture in sequence-to-sequence learning. RNNs, however, are
inherently sequential models that do not allow parallelization of their
computations. Transformers are emerging as a natural alternative to
standard RNNs, replacing recurrent computations with a multi-head
attention mechanism.

In this paper, we propose the SepFormer, a novel RNN-free
Transformer-based neural network for speech separation. The Sep-
Former learns short and long-term dependencies with a multi-scale
approach that employs transformers. The proposed model achieves
state-of-the-art (SOTA) performance on the standard WSJ0-2/3mix
datasets. It reaches an SI-SNRi of 22.3 dB on WSJ0-2mix and an
SI-SNRi of 19.5 dB on WSJ0-3mix. The SepFormer inherits the
parallelization advantages of Transformers and achieves a compet-
itive performance even when downsampling the encoded represen-
tation by a factor of 8. It is thus significantly faster and it is less
memory-demanding than the latest speech separation systems with
comparable performance.

Index Terms— speech separation, source separation, trans-
former, attention, deep learning.

1. INTRODUCTION

RNNs are a crucial component of modern audio processing sys-
tems and they are used in many different domains, including speech
recognition, synthesis, enhancement, and separation, just to name a
few. Especially when coupled with multiplicative gate mechanisms
(like LSTM [1] and GRU [2, 3]), their recurrent connections are es-
sential to learn long-term dependencies and properly manage speech
contexts. Nevertheless, the inherently sequential nature of RNNs
impairs an effective parallelization of the computations. This bot-
tleneck is particularly evident when processing large datasets with
long sequences. On the other hand, Transformers [4] completely
avoid this bottleneck by eliminating recurrence and replacing it with
a fully attention-based mechanism. By attending to the whole se-
quence at once, a direct connection can be established between dis-
tant elements allowing Transformers to learn long-term dependen-
cies more easily [5]. For this reason, Transformers are gaining con-
siderable popularity for speech processing and recently showed com-
petitive performance in speech recognition [6], synthesis [7], en-
hancement [8], diarization [9], as well as speaker recognition [10].

Little research has been done so far on Transformer-based mod-
els for monaural audio source separation. The field has been revo-
lutionized by the adoption of deep learning techniques [11–16], and
with recent works [17–23] achieving impressive results by adopt-
ing an end-to-end approach. Most of the current speech separation
techniques [14, 15, 17–22] require effective modeling of long input
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Fig. 1. The high-level description of our system: The encoder block
estimates a learned-representation for the input signal, while the
masking network estimates optimal masks to separate the sources
present in the mixtures. The decoder finally reconstructs the esti-
mated sources in the time domain using the masks provided by the
masking network.

sequences to perform well. Current systems rely, in large part, on the
learned-domain masking strategy popularized by Conv-TasNet [15].
In this framework, an overcomplete set of analysis and synthesis fil-
ters is learned directly from the data, and separation is performed
by estimating a mask for each source in this learned-domain. Build-
ing on this, Dual-Path RNN (DPRNN) [17] has demonstrated that
better long-term modeling is crucial to improve the separation per-
formance. This is achieved by splitting the input sequence into mul-
tiple chunks that are processed locally and globally with different
RNNs. Nevertheless, due to the use of RNNs, DPRNN still suffers
from the aforementioned limitations of recurrent connections, espe-
cially regarding the global processing step. An attempt to integrate
transformers into the speech separation pipeline has been recently
done in [22] where the proposed Dual-Path Transformer Network
(DPTNet) is shown to outperform the standard DPRNN. Such an ar-
chitecture, however, still embeds an RNN, effectively negating the
parallelization capability of pure-attention models.

In this paper, we propose a novel model called SepFormer (Sep-
aration Transformer), which is mainly composed of multi-head at-
tention and feed-forward layers. We adopt the dual-path frame-
work introduced by DPRNN and we replace RNNs with a multi-
scale pipeline composed of transformers that learn both short and
long-term dependencies. The dual-path framework enables to miti-
gate the quadratic complexity of transformers, as transformers in the
dual-path framework process smaller chunks.

To the best of our knowledge, this is the first work showing
that we can obtain state-of-the-art performance in separation with an
RNN-free Transformer-based architecture. The SepFormer achieves
an SI-SNRi of 22.3 dB on the standard WSJ0-2mix dataset. It also
achieves the SOTA performance of 19.5 dB SI-SNRi on the WSJ0-
3mix dataset. The SepFormer not only processes all the time steps in
parallel but also achieves competitive performance when downsam-
pling the encoded representation by a factor of 8. This makes the
proposed architecture significantly faster and less memory demand-
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ing than the latest RNN-based separation models.

2. THE MODEL

The proposed model is based on the learned-domain masking ap-
proach [14, 15, 17–22] and employs an encoder, a decoder, and a
masking network, as shown in Figure 1. The encoder is fully con-
volutional, while the masking network employs two Transformers
embedded inside the dual-path processing block proposed in [17].
The decoder finally reconstructs the separated signals in the time
domain by using the masks predicted by the masking network. To
foster reproducibility, the SepFormer will be made available within
the SpeechBrain toolkit1.

2.1. Encoder

The encoder takes in the time-domain mixture-signal x ∈ RT as
input, which contains audio from multiple speakers. It learns an
STFT-like representation h ∈ RF×T ′

using a single convolutional
layer:

h = ReLU(conv1d(x)). (1)

As we will describe in Sec. 4, the stride factor of this convolution
impacts significantly on the performance, speed, and memory of the
model.

2.2. Masking Network

Figure 2 (top) shows the detailed architecture of the masking net-
work (Masking Net). The masking network is fed by the encoded
representations h ∈ RF×T ′

and estimates a mask {m1, . . . ,mNs}
for each of the Ns speakers in the mixture.

As in [15], the encoded input h is normalized with layer normal-
ization [24] and processed by a linear layer (with dimensionality F ).
We then create overlapping chunks of size C by chopping up h on
the time axis with an overlap factor of 50%. We denote the output of
the chunking operation with h′ ∈ RF×C×Nc, where C is the length
of each chunk, and Nc is the resulting number of chunks.

The representation h′ feeds the SepFormer block, which is the
main component of the masking network. This block, which will be
described in detail in Sec. 2.3, employs a pipeline composed of two
transformers able to learn short and long-term dependencies.

The output of the SepFormer h′′ ∈ RF×C×Nc is processed by
PReLU activations followed by a linear layer. We denote the output
of this module h′′′ ∈ R(F×Ns)×C×Nc, where Ns is the number of
speakers. Afterwards we apply the overlap-add scheme described
in [17] and obtain h′′′′ ∈ RF×Ns×T ′

. We pass this representation
through two feed-forward layers and a ReLU activation at the end to
finally obtain the mask mk for each of the speakers.

2.3. SepFormer Block

Figure 2 (Middle) shows the architecture of the SepFormer block.
The SepFormer block is designed to model both short and long-
term dependencies with the dual-scale approach of DPRNNs [17].
In our model, the transformer block which models the short-term
dependencies is named IntraTransformer (IntraT), and the block for
longer-term dependencies is named InterTransformer (InterT). In-
traT processes the second dimension of h′, and thus acts on each
chunk independently, modeling the short-term dependencies within
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each chunk. Next, we permute the last two dimensions (which we
denote with P), and the InterT is applied to model the transitions
across chunks. This scheme enables effective modelling of long-
term dependencies across the chunks. The overall transformation of
the SepFormer is therefore defined as follows:

h′′ = finter(P(fintra(h
′))), (2)

where we denote the IntraT and InterT with finter(.), and fintra(.),
respectively. The overall SepFormer block is repeated N times.

2.3.1. Intra and Inter Transformers

Figure 2 (Bottom) shows the architecture of the Transformers used
for both the IntraT and InterT blocks. It closely resembles the orig-
inal one defined in [4]. We use the variable z to denote the input
to the Transformer. First of all, sinusoidal positional encoding e is
added to the input z, such that,

z′ = z + e. (3)

Positional encoding injects information on the order of the various
elements composing the sequence, thus improving the separation
performance. We follow the positional encoding definition in [4].

We then apply multiple Transformer layers. Inside each Trans-
former layer g(.), we first apply layer normalization, followed by
multi-head attention (MHA):

z′′ = MultiHeadAttention(LayerNorm(z′)). (4)

As proposed in [4], each attention head computes the scaled dot-
product attention between all the elements of the sequence. The
Transformer finally employs a feed-forward network (FFW), which
is applied to each position independently:

z′′′ = FeedForward(LayerNorm(z′′ + z′)) + z′′ + z′. (5)

The overall transformer block is therefore defined as follows:

f(z) = gK(z + e) + z, (6)

where gK(.) denotes K layers of transformer layer g(.). We use
K = Nintra layers for the IntraT, and K = Ninter layers for the
InterT. As shown in Figure 2 (Bottom) and Eq. (6), we add residual
connections across the transformer layers, and across the transformer
architecture to improve gradient backpropagation.

2.4. Decoder

The decoder simply uses a transposed convolution layer, with the
same stride and kernel size of the encoder. The input to the de-
coder is the element-wise multiplication between the mask mk of
the source k and the output of the encoder h. The transformation of
the decoder can therefore be expressed as follows:

ŝk = conv1d-transpose(mk ∗ h), (7)

where ŝk ∈ RT denotes the separated source k.

3. EXPERIMENTAL SETUP
3.1. Dataset

We use the popular WSJ0-2mix and WSJ0-3mix datasets [11] for
source separation, where mixtures of two speakers and three speak-
ers are created by randomly mixing utterances in the WSJ0 corpus.
The relative levels for the sources are sampled uniformly between 0
dB to 5 dB. Respectively, 30, 10, 5 hours of speech is used for train-
ing, validation, and test. The training and test sets are created with
different sets of speakers. The waveforms are sampled at 8 kHz.

speechbrain.github.io/
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Fig. 2. (Top) The overall architecture proposed for the masking network. (Middle) The SepFormer Block. (Bottom) The transformer
architecture f(.) that is used both in the IntraTransformer block and in the InterTransformer block.

3.2. Architecture and Training Details

The encoder is based on 256 convolutional filters with a kernel size
of 16 samples and a stride factor of 8 samples. The decoder uses the
same kernel size and the stride factors of the encoder.

In our best models, the SepFormer masking network processes
chunks of size C = 250 with a 50 % overlap between them and
employs 8 layers of transformers in both IntraT and InterT. The
IntraT-InterT dual-path processing pipeline is repeated N = 2 times.
We used 8 parallel attention heads, and 1024-dimensional positional
feed-forward networks within each Transformer layer. The model
has a total of 26 million parameters.

We explored the use of dynamic mixing (DM) data augmenta-
tion [23] which consists in on-the-fly creation of new mixtures from
single speaker sources. In this work we expanded this powerful tech-
nique by applying also speed perturbation on the sources before mix-
ing them. The speed randomly changes between 95 % slow-down
and 105 % speed-up.

We used the Adam algorithm [25] as optimizer, with a learn-
ing rate of 15e−5. After epoch 65 (after epoch 100 with DM), the
learning rate is annealed by halving it if we do not observe any im-
provement of the validation performance for 3 successive epochs
(5 epoch for DM). Gradient clipping is employed to limit the L2
norm of the gradients to 5. During training, we used a batch size of
1, and used the scale-invariant signal-to-noise Ratio (SI-SNR) [26]
via utterance-level permutation invariant loss [13], with clipping at
30dB [23]. We used automatic mixed-precision to speed up training.
The system is trained for a maximum of 200 epochs. Each epoch
takes approximately 1.5 hours on a single NVIDIA V100 GPU with
32 GB of memory.

4. RESULTS

4.1. Results on WSJ0-2mix

Table 1 compares the performance achieved by the proposed Sep-
Former with the best results reported in the literature on the WSJ0-
2mix dataset. The SepFormer achieves an SI-SNR improvement (SI-
SNRi) of 22.3 dB and a Signal-to-Distortion Ratio [30] (SDRi) im-
provement of 22.4 dB on the test-set with dynamic mixing. When
using dynamic mixing, the proposed architecture achieves state-of-
the-art performance. The SepFormer outperforms previous systems
without using dynamic mixing except Wavesplit, which uses speaker
identity as additional information.

Table 1. Best results on the WSJ0-2mix dataset (test-set). DM
stands for dynamic mixing.

Model SI-SNRi SDRi # Param Stride
Tasnet [27] 10.8 11.1 n.a 20
SignPredictionNet [28] 15.3 15.6 55.2M 8
ConvTasnet [15] 15.3 15.6 5.1M 10
Two-Step CTN [29] 16.1 n.a. 8.6M 10
DeepCASA [18] 17.7 18.0 12.8M 1
FurcaNeXt [19] n.a. 18.4 51.4M n.a.
DualPathRNN [17] 18.8 19.0 2.6M 1
sudo rm -rf [21] 18.9 n.a. 2.6M 10
VSUNOS [20] 20.1 20.4 7.5M 2
DPTNet* [22] 20.2 20.6 2.6M 1
Wavesplit** [23] 21.0 21.2 29M 1
Wavesplit** + DM [23] 22.2 22.3 29M 1
SepFormer 20.4 20.5 26M 8
SepFormer + DM 22.3 22.4 26M 8

*only SI-SNR and SDR (without improvement) are reported.
**uses speaker-ids as additional info.

Table 2. Ablation of the SepFormer on WSJ0-2Mix (validation set).
SI-SNRi N Nintra Ninter # Heads DFF PosEnc DM

22.3 2 8 8 8 1024 Yes Yes
20.5 2 8 8 8 1024 Yes No
20.4 2 4 4 16 2048 Yes No
20.2 2 4 4 8 2048 Yes No
19.9 2 4 4 8 2048 Yes No
19.8 3 4 4 8 2048 Yes No
19.4 2 4 4 8 2048 No No
19.2 2 4 1 8 2048 Yes No
19.1 2 3 3 8 2048 Yes No
19.0 2 3 3 8 2048 No No

4.2. Ablation Study

Hereafter we study the effect of various hyperparameters and data
augmentation on the performance of the SepFormer using WSJ0-
2mix dataset. The results are summarized in Table 2. The reported
performance in this table is calculated on the validation set.

We observe that the number of InterT and IntraT blocks has an
important impact on the performance. The best results are achieved
with 8 layers for both blocks replicated two times. We also would
like to point out that a respectable performance of 19.2 dB is ob-
tained even when we use a single layer transformer for the Inter-
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Fig. 3. (Left) The traning curves of SepFormer, DPRNN, and DPTNeT on the WSJ0-2mix dataset. (Middle & Right) The comparison of
forward-pass speed and memory usage in the GPU on inputs ranging 1-5 seconds long sampled at 8kHz.

Table 3. Best results on the WSJ0-3mix dataset.
Model SI-SNRi SDRi # Param
ConvTasnet [15] 12.7 13.1 5.1M
DualPathRNN [17] 14.7 n.a 2.6M
VSUNOS [20] 16.9 n.a 7.5M
Wavesplit [23] 17.3 17.6 29M
Wavesplit [23] + DM 17.8 18.1 29M
Sepformer 17.6 17.9 26M
Sepformer + DM 19.5 19.7 26M

Transformer. This suggests that the IntraTransformer, and thus lo-
cal processing, has a greater influence on the performance. It also
emerges that positional encoding is helpful (e.g. see lines 3 and 5 of
Table 2). A similar outcome has been observed in [31] for speech
enhancement. As for the number of attention heads, we observe a
slight performance difference between 8 and 16 heads. Finally, it
can be observed that dynamic mixing helps the performance signifi-
cantly.

4.3. Results on WSJ0-3mix
Table 3 showcases the best performing models on the WSJ0-3mix
dataset. SepFormer obtains the state-of-the-art performance with an
SI-SNRi of 19.5 dB and an SDRi of 19.7 dB. We used here the best
architecture found for the WSJ0-2mix dataset. The only difference is
that the decoder has now three outputs. It is worth noting that on this
corpus the SepFormer outperforms all previously proposed systems.

Our results on WSJ0-2mix and WSJ0-3mix show that it is pos-
sible to achieve state-of-the-art performance in separation with an
RNN-free Transformer-based model. The big advantage of Sep-
Former over RNN-based systems like [17,20,22] is the possibility to
parallelize the computations over different time steps. This leads to
faster training and inference, as described in the following section.

4.4. Speed and Memory Comparison

We now compare the training and inference speed of our model with
DPRNN [17] and DPTNet [22]. Figure 3 (left) shows the training
curves of the aforementioned models on the WSJ0-2mix dataset.
We plot the performance achieved on the validation set in the first
48 hours of training versus the wall-clock time. For a fair com-
parison, we used the same machine with the same GPU (a single
NVIDIA V100-32GB) for all the models. Moreover, all the systems
are trained with a batch size of 1 and employ automatic mixed pre-
cision. We observe that the SepFormer is faster than DPRNN and
DPTNeT. Figure 3 (left), highlights that SepFormer reaches above
17dB levels only after a full day of training, whereas the DPRNN

model requires two days of training to achieve the same level of per-
formance.

Figure 3 (middle&right) compares the average computation time
(in ms) and the total memory allocation (in GB) during inference
when single precision is used. We analyze the speed of our best
model for both WSJ0-2Mix and WSJ0-3Mix datasets. We compare
our models against DP-RNN, DPTNeT, and Wavesplit. All the mod-
els are stored in the same NVIDIA RTX8000-48GB GPU and we
performed this analysis using the PyTorch profiler [32]. For Waves-
plit we used the implementation in [33].

From this analysis, it emerges that the SepFormer is not only
faster but also less memory demanding than DPTNet, DPRNN, and
Wavesplit. We observed the same behavior using the CPU for infer-
ence also. Such a level of computational efficiency is achieved even
though the proposed SepFormer employs more parameters than the
other RNN-based methods (see Table 1). This is not only due to the
superior parallelization capabilities of the proposed model, but also
because the best performance is achieved with a stride factor of 8
samples, against a stride of 1 for DPRNN and DPTNet. Increasing
the stride of the encoder results in downsampling the input sequence,
and therefore the model processes less data. In [17], the authors
showed that the DPRNN performance degrades when increasing the
stride factor. The SepFormer, instead, reaches competitive results
even with a relatively large stride, leading to the aforementioned
speed and memory advantages.

5. CONCLUSIONS

In this paper, we proposed a novel neural model for speech sepa-
ration called SepFormer (Separation Transformer). The SepFormer
is an RNN-free architecture that employs a masking network com-
posed of transformers only. The masking network learns both short
and long-term dependencies using a multi-scale approach. Our re-
sults, reported on the WSJ0-2mix and WSJ0-3mix datasets, high-
light that we can reach state-of-the-art performances in source sep-
aration without using RNNs in the network design. This way, com-
putations over different time-steps can be parallelized. Moreover,
our model achieves a competitive performance even when subsam-
pling the encoded representation by a factor of 8. These two prop-
erties lead to a significant speed-up at training/inference time and
a drastic reduction of memory usage, especially when compared to
recent models such as DPRNN, DPTNet, and Wavesplit. As future
work, we would like to explore different transformer architectures
that could potentially further improve performance, speed, and mem-
ory usage.
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Martın-Doñas, D. Ditter, A. Frank, A. Deleforge, and E. Vin-
cent, “Asteroid: the PyTorch-based audio source separation
toolkit for researchers,” in Proc. of Interspeech, 2020, pp.
2637–2641.

https://pytorch.org/tutorials/recipes/recipes/profiler.html 
https://pytorch.org/tutorials/recipes/recipes/profiler.html 

	1  Introduction
	2  The model
	2.1  Encoder
	2.2  Masking Network
	2.3  SepFormer Block
	2.3.1  Intra and Inter Transformers

	2.4  Decoder

	3  Experimental Setup
	3.1  Dataset
	3.2  Architecture and Training Details

	4  Results
	4.1  Results on WSJ0-2mix
	4.2  Ablation Study
	4.3  Results on WSJ0-3mix
	4.4  Speed and Memory Comparison

	5  Conclusions
	6  References

